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Reverse engineering neural circuits
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""" . Motor skills need sensory feedback

AGENT: BIOLOGICAL CNS
Muscle length
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=PFL  Simple skills require feedback

Video taken from Roland Johansson Lab - Department of
Integrative Medical Biology. Umea University, Sweden



"t Proprioception (the sense of posture)
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=P~L Tuning curves in somatosensory cortex
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Reverse-engineering proprioception

Alessandro Marin Axel Bisi

Vargas (MA stu'den t, now PhD
student with Carl Petersen)
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Marin Vargas* A., Bisi* A., Chiappa A., Versteeg C., Miller L., Mathis A. Cell 2024



=prL Reverse-engineering proprioception
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=prL Creating task-driven models of proprioception

HYPOTHESES TESTING
Ingredient 3: Task1
Putative goals (of proprioception)
Task2

Prlmary /\9 )

somatosensory cortex CN
Ingredient 2: Thalamus I; b
o Cuneate nucleus = ~
Spinal cord ) -

Ingredient 1: simulating spindle dynamics at scale
Marin Vargas* A., Bisi* A., Chiappa A., Versteeg C., Miller L., Mathis A. Cell 2024



=prL Assessing task-driven models of proprioception

HYPOTHESES TESTING BEHAVIORAL EXPERIMENT
Task 1
Center-out reaching
Task 2 Beha\noral
movements
Networlfjc_tjvatlons anary ‘
_— somatosensory cortex CN : .
— Thalamus / ; ,
—t e Cuneate nucleus na g
—— Spinal cord -~ ) P
= e ) " @ Joint pose estimation

(DeepLabCut)

Note: models trained
with synthetic data,
but tested with real data!

Experimental muscle

Spmdle mDUts Marin Vargas* A., Bisi* A., Chiappa A., Versteeg C., Miller L., Mathis A. Cell 2024
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Reverse-engineering proprioception

HYPOTHESES TESTING
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=PFL  Creating synthetic data & candidate models

® Use biomechanics simulators to estimate spinal cord input at scale (muscle spindles)
Muscle length Muscle velocity
Z E g
-36 0 X 0'0‘0 50 AlOO 150 200 0 50 100 150 200
Time [ms] Time [ms]
[}

Develop neural networks models that process information across muscles & time

Convolutional layers:

Input data Architecture type:
Spatial Time Spatiotemporal Spatial-Temporal Spatiotemporal Temporal-Spatial Spatial-LSTM
convolution  convolution convolution - P o] Recurrent layer
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Method adapted fromour previous work: Sandbrink, K. J., et al. " Contrasting action and posture coding with hierarchical deep neural network models of proprioception." eLife (2023)



""" Dataset: Creating input statistics
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Sandbrink*, Mamidanna*, Michaelis, Bethge, M. Mathis*, A. Mathis*, eLife 2023



=P7L 16 computational tasks to create candidate models

HYPOTHESES GENERATION
EgoHand | Ego Limb. Joint Limb.
~= —_—
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Marin Vargas* A., Bisi* A., Chiappa A., Versteeg C., Miller L., Mathis A. Cell 2024



=PFL DeeplLabCut: atoolbox for efficient markerless pose estimation

Tissues Organisms

2 Lauer et al. 2022
4 Nature methods

Joska et al.
X 2021
N\ ICRA

)
N

Cachot et al. 2021
Science Advances *  www.deeplabcut.org
e Active user community (i.e., help!)
* > 110code contributors on GitHub

Nature Neuro 2018, Nature

«  >800,000 downloads h Protocols 2019, Neuron 2020,
*  >4,300citations for Nat Neuro ‘18 Chan WACV 2021, ICRA, 2021, CVPR-W
e Usedin over 1,000 labs and ZUCkel‘bel‘g 2021, Nature Methods 2022,

institutes around the world Initiative & ICCV 2023, Nat Comms 2024


http://www.deeplabcut.org/

=PFL  EXPERIMENTS TO TEST GENERALIZATION of the leamed features

BEHAVIORAL EXPERIMENT
DeepLabCut

Mathis et al.Nat Neuro 2018

c
J
Joint pose
estimation
Active reaches Passive perturbations
-7 Target
10 directions
G E i
.
Cr— < N 1
‘ ‘ s | Data from Lee Miller’s 10 N
/ [/ | Laboratory of Limb
S / | Motor Control, Northwestern -10 0 10 3 0 7
I /L | University, Chicago. x-position [cm] x-position [cm]



=PFL " Task-trained models predict single neuron dynamics

Active trials NHP S, CN unit 1 (EV=0.622) 500 ms
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Marin Vargas* A., Bisi* A., Chiappa A., Versteeg C., Miller L., Mathis A. Cell 2024



£PFL  Task-trained models predict single neuron dynamics

EXAMPLE SINGLE-NEURON SINGLE-TRIAL NEURAL PREDICTIONS
Active trials NHP S, CN unit 1 (EV=0.622) 500 ms NHP H, S1 unit 49 (EV=0.457)
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Task-trained models outperform linear, randomly
initialized and data-driven models
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=PFL  Task-performance and neural predictability are comrelated

XY,z
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=PFL  Unsupervised hypothesis comparison
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=PFL  Unsupervised hypothesis comparison

ACTIVE
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Unsupervised hypothesis comparison

JP = Joint position
JM = Joint velocity

-0.5

-1.0

-1.5

=Pr-L
HP = Hand position LP = Limb position
ACTIVE HV = Hand velocity LV = Limb velocity
= Hand acceleration = Limb acceleration
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=PFL  Unsupervised hypothesis comparison

HP = Hand position LP = Limb position JP = Joint position RR = Redundancy Reduction AR = Action Recognition
PASS'VE HV = Hand velocity LV = Limb velocity JM = Joint velocity = Autoencoder = Torque
= Hand acceleration = Limb acceleration = Joint acceleration
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=PFL  Lack of hierarchical representation
Primary yay | N

somatosensory cortex
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Marin Vargas* A., Bisi* A., Chiappa A., Versteeg C., Miller L., Mathis A. Cell 2024



=PrL - -
Discussion

» For all 16 hypotheses, if a computation is better learned on synthetic, passive spindle data,
then the model also generalizes better to neural data

= Neural data (in the active case) is best explained by the hypothesis that proprioception is
optimized to encode the location and velocity of the body (irrespective of coordinate
framework)

= Lack of evidence for hierarchical processing; this suggests that proprioception even in the
brain stem is dominated by efference copies

ACTIVE PASSIVE
(= (= )
cortex Top-down modulation mmex
T Center-out reaching Passive perturbation
X
S X /

T o .
s
) | -

)
1\ \1, y-motoneurons , 1\ ,
\ inputs / \ inputs /

Quaedam sunt in intellectu non prius in sensu. -- cf: H Charlton Bastian. Brain, 1887.
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Proprioceptive
lllusions




=PFL [llusions of movement
with muscle-tendon vibrations
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3 5o A
3 vibr. T.B. 70Hz
2s

Roll and Vedel Exp Brain Research. 1982



=PFL  Effect on afferent firing rate

J.P. Roll and J. P. Vedel: Muscle Spindle Contribution to Kinaesthesia 183
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Fig. 4A-C. Driven activity (instantaneous f:requem:y) of a spindle primary ending by mechanical vibration applied to the tendon of the
receptor-bearing muscle (TA). A Optimal primary emlmg activation by tendon v1hratmn from 10 to 100 Hz. B The same primary ending
can eventually respond by a sub-harmonic di 10af 1 ion freq y (60 Hz in the example). C One-to-one
primary ending responses to 30, 60, and 90 Hz u:ndon vlbranun

Roll & Vedel. Exp Brain Research. 1982
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Fig. 1. Driving modalities of muscle spindlc primary (Ia) and secondary (1I) endings and tendon organ (Ib) activitics induced by mechanical

Roll, Vedel, and Ribot. Exp Brain Research. 1989



=PFL  Details of vibration-induced illusions

Vibration of

Gamma motoneurons
muscle belly

l Sensory endings l

Tendon // (!YPe' andll) ||
vibration l I /// ) /

/

7=

Tendon

Tendon '

‘Int}af'usal muscle fibres
Extrafusal muscle fibres 3 (by contracting, they stretch the
(contract the muscle) Muscle SPlﬂd’es sensitive part of muscle spindle)

* Vibration over the tendon or muscle belly at ~100Hz

* Vibrations mainly affect la afferent output

* Limb muscle vibration creates an illusory limb movement in the direction corresponding
to lengthening of the vibrated muscle.

Taylor, Taylor, Seizova-Cajic. Multisensory Research, 2017



=PrL Studying the effect of tendon vibrations

elbow angle

|—

|
|
|

I

WA %

Simulated vibration

vibr. TB. TOHz

Roll and Vedel Exp Brain Research. 1982

Time (s)

Spindle firing rates

QO OO

Ascending proprioceptive
network model

2s

Time (s)

Predicted elbow flexion



£PFL  Modeling proprioceptive perception

Adriana
Perez Rotondo

Merkourios Simos

@ Shoulder
® Elbow
Wrist oy
— — Xy
NJ Time (s) Time (s)
Arm trajectory X; Muscle states 1; Spindle firing rates s, Ascending proprioceptive Esliales
(multiple afferents) network model arm trajectory
PCR

Perez Rotondo* A., Simos* M., David F., Pigeon S., Blanke, O., Mathis A. Experimental Physiology (in press) and BioRxiv 2025



=PFL Dataset statistics

Wrist position across all motions
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Adriana Perez Rotondo



=P*L Model predictions
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=PFL Modelling tendon vibrations
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Fig. 1. Driving modalities of muscle spindle primary ([a) and secondary (1I) endings and tendon organ (Ib) activitics induced by mechanical

Perez Rotondo* A., Simos* M. etal. 2025 Roll, Vedel, and Ribot. Exp Brain Research. 1989
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Firing rate (Hz)
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Effect of (simulated) vibrations
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Perez Rotondo* A., Simos* M., David F., Pigeon S., Blanke, O., Mathis A. Experimental Physiology (in press) and BioRxiv 2025



=PFL Effect of simulated vibrations
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=PFL  Statistical models

= We can build powerful models (data-driven or task-driven)

= \WWe can compare hypotheses and scaling of models (why questions)
= Enables novel experiments (behavioral, physiology ...)

el Closed loop

. =
9 D o »
9 l/ £ *- /7
\ ¥ % .
G S ) o
3 ¢ /"
L ATS X / Y
experimental v
- design
52 e -
f. Z \ ) [/ } »
N e ; 9
1

M. Mathis, Perez Rotondo, Cheng, Tolias, Mathis Cell 2024



=PFL  Take-home messages

= To study proprioception: we combined biomechanics, representation learning & neural
data analysis.

= Networks trained on synthetic (muscle) data generalize to predict single-trial neural
activity in the brain stem and cortex of primates performing limb center-out movements

= Architectures that are better at solving the tasks are also better at predicting the neural
data.

= Models trained to predict the limb position and velocity were the best to predict neural
activity. Note this could be supervised by vision.

= Thus, task-driven modeling allowed us to test multiple hypotheses
= Task-trained models are also susceptible to proprioceptive illusions

= NOTE: We simplified the system by purposefully isolating the sensory part of
proprioception
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