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Biological Intelligence Artificial Intelligence

Hausmann*, Marin-Vargas*, Mathis**, Mathis**, Curr op. in Neuro., 2021



Reverse engineering neural circuits

Hausmann*, Marin-Vargas*, Mathis**, Mathis**, Curr op. in Neuro., 2021



Motor skills need sensory feedback

Sensory feedback

Motor commands

Muscle spindles

GTOs

• Muscle length
• Muscle velocity
• Muscle force
• Touch



Simple skills require feedback

Video taken from Roland Johansson Lab - Department of 
Integrative Medical Biology. Umea University, Sweden



Proprioception (the sense of posture)

Delhaye et al., 2018



Proprioception (the sense of posture)

Delhaye et al., 2018

Banks 2020

Muscle spindle



Tuning curves in somatosensory cortex

Known: Direction, velocity, acceleration tuning… 

Prud’homme and Kalaska 1994

Sandbrink*, Mamidanna*, et al. eLife 2023



Delhaye et al., 2018

What’s the trajectory of my limbs?

What is the integrative logic 
of proprioception?



Delhaye et al., 2018

What’s the trajectory of my limbs?

What is the integrative logic 
of proprioception?



Marin Vargas* A., Bisi* A., Chiappa A., Versteeg C., Miller L., Mathis A. Cell 2024

Reverse-engineering proprioception

Axel Bisi
(MA student, now PhD 

student with Carl Petersen)

Alessandro Marin 
Vargas



Marin Vargas* A., Bisi* A., Chiappa A., Versteeg C., Miller L., Mathis A. Cell 2024

Reverse-engineering proprioception



Creating task-driven models of proprioception

Ingredient 1: simulating spindle dynamics at scale

Ingredient 2: 
ANNs

Ingredient 3: 
Putative goals (of proprioception) 

Marin Vargas* A., Bisi* A., Chiappa A., Versteeg C., Miller L., Mathis A. Cell 2024



Assessing task-driven models of proprioception

Note: models trained 
with synthetic data,
but tested with real data!

Marin Vargas* A., Bisi* A., Chiappa A., Versteeg C., Miller L., Mathis A. Cell 2024



Linear 
regression

Reverse-engineering proprioception

Marin Vargas* A., Bisi* A., Chiappa A., Versteeg C., Miller L., Mathis A. Cell 2024



Creating synthetic data & candidate models

• Use biomechanics simulators to estimate spinal cord input at scale (muscle spindles)

Muscle length Muscle velocity

• Develop neural networks models that process information across muscles & time

Method adapted from our previous work: Sandbrink, K. J., et al. "Contrasting action and posture coding with hierarchical deep neural network models of proprioception." eLife (2023)



Dataset: Creating input statistics

Sandbrink*, Mamidanna*, Michaelis, Bethge, M. Mathis*, A. Mathis*, eLife 2023



16 computational tasks to create candidate models

c

Marin Vargas* A., Bisi* A., Chiappa A., Versteeg C., Miller L., Mathis A. Cell 2024



Adamian et al, 2020 
The Laryngoscope

Cachot et al. 2021
Science Advances

Krupenevich et al, 2021

OrganismsTissuesCells

DeepLabCut: a toolbox for efficient markerless pose estimation

Lauer et al. 2021

• www.deeplabcut.org
• Active user community (i.e., help!)
• > 110 code contributors on GitHub
• > 800,000 downloads
• > 4,300 citations for Nat Neuro ’18
• Used in over 1,000 labs and 

institutes around the world

Lauer et al. 2022
Nature methods

Nature Neuro 2018, Nature 
Protocols 2019, Neuron 2020,  

WACV 2021, ICRA, 2021, CVPR-W 
2021, Nature Methods 2022,
ICCV 2023, Nat Comms 2024

Joska et al. 
2021
ICRA

http://www.deeplabcut.org/


EXPERIMENTS TO TEST GENERALIZATION of the learned features

Data from Lee Miller’s 
Laboratory of Limb
Motor Control, Northwestern
University, Chicago.

Mathis  et al. Nat Neuro 2018



Task-trained models predict single neuron dynamics

Explained variance

Marin Vargas* A., Bisi* A., Chiappa A., Versteeg C., Miller L., Mathis A. Cell 2024



Task-trained models predict single neuron dynamics

Concatenated single trials



Task-trained models outperform linear, randomly 
initialized and data-driven models



Task-performance and neural predictability are correlated

Hand pos. & Vel Hand pos. & Vel

Different model architectures

Optimized on biomechanics (body)



Unsupervised hypothesis comparison

ACTIVE



Unsupervised hypothesis comparison

ACTIVE

Less 
brain-like

More
brain-like



Unsupervised hypothesis comparison

ACTIVE

Less 
brain-like

More
brain-like



Unsupervised hypothesis comparison

PASSIVE

Less 
brain-like

More
brain-like



Lack of hierarchical representation

passiveactive

Marin Vargas* A., Bisi* A., Chiappa A., Versteeg C., Miller L., Mathis A. Cell 2024



Discussion
▪ For all 16 hypotheses, if a computation is better learned on synthetic, passive spindle data, 

then the model also generalizes better to neural data

▪ Neural data (in the active case) is best explained by the hypothesis that proprioception is 
optimized to encode the location and velocity of the body (irrespective of coordinate 
framework)

▪ Lack of evidence for hierarchical processing; this suggests that proprioception even in the 
brain stem is dominated by efference copies

Quaedam sunt in intellectu non prius in sensu.  -- cf: H Charlton Bastian. Brain, 1887.



Proprioceptive 
illusions



Illusions of movement 
with muscle-tendon vibrations

Roll and Vedel Exp Brain Research. 1982



Effect on afferent firing rate

Roll & Vedel. Exp Brain Research. 1982 Roll , Vedel, and Ribot. Exp Brain Research. 1989



Details of vibration-induced illusions

• Vibration over the tendon or muscle belly at ~100Hz
• Vibrations mainly affect Ia afferent output
• Limb muscle vibration creates an illusory limb movement in the direction corresponding 

to lengthening of the vibrated muscle.

Taylor, Taylor, Seizova-Cajic. Multisensory Research, 2017



Studying the effect of tendon vibrations

Roll and Vedel Exp Brain Research. 1982
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Modeling proprioceptive perception

Perez Rotondo* A., Simos* M., David F., Pigeon S., Blanke, O., Mathis A. Experimental Physiology (in press) and BioRxiv 2025  

Merkourios Simos
Adriana 

Perez Rotondo
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Model predictions



Modelling tendon vibrations

Roll , Vedel, and Ribot. Exp Brain Research. 1989Perez Rotondo* A., Simos* M. et al. 2025



Effect of (simulated) vibrations

Perez Rotondo* A., Simos* M., David F., Pigeon S., Blanke, O., Mathis A. Experimental Physiology (in press) and BioRxiv 2025  



Effect of simulated vibrations



▪ We can build powerful models (data-driven or task-driven)

▪ We can compare hypotheses and scaling of models (why questions) 

▪ Enables novel experiments (behavioral, physiology …)

Statistical models

M. Mathis, Perez Rotondo, Cheng, Tolias, Mathis Cell 2024



▪ To study proprioception: we combined biomechanics, representation learning & neural 
data analysis.

▪ Networks trained on synthetic (muscle) data generalize to predict single-trial neural 
activity in the brain stem and cortex of primates performing limb center-out movements

▪ Architectures that are better at solving the tasks are also better at predicting the neural 
data. 

▪ Models trained to predict the limb position and velocity were the best to predict neural 
activity. Note this could be supervised by vision. 

▪ Thus, task-driven modeling allowed us to test multiple hypotheses 

▪ Task-trained models are also susceptible to proprioceptive illusions

▪ NOTE: We simplified the system by purposefully isolating the sensory part of 
proprioception

Take-home messages
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